Масса и размеры молекул.

Средний диаметр молекулы ≈ 3 · 10 -10 м.

Средний объём пространства, занимаемого молекулой ≈ 2,7 · 10 -29 м 3 .

Средняя масса молекулы ≈ 2,4 · 10 -26 кг.

Идеальный газ.

Идеальным называют газ, молекулы которого можно считать материальными точками и взаимодействие которых друг с другом осуществляется только путём столкновений.

Теплообмен.

Теплообмен - процесс обмена внутренней энергией соприкасающихся тел, имеющих разные температуры. Энергия, переданная телом или системой тел в процессе теплообмена, есть количество теплоты Q

Нагревание и охлаждение.

Нагревание и охлаждение возникают благодаря получению одним телом количества теплоты Q нагр и потери другим количества теплоты Q охл. В замкнутой системе

Количество теплоты:

m - масса тела, Δt - измение температуры при нагревании (охлаждении), c - удельная теплоёмкость - энергия, необходимая для нагревания тела массой в 1 кг на 1° C.

Единица удельной теплоёмкости - 1 Дж/кг.

Плавление и кристаллизация

λ - удельная теплота плавления, измеряется в Дж/кг.

Парообразование и конденсация:

r - удельная теплота парообразования, измеряется в Дж/кг.

Сгорание

k - удельная теплота сгорания (теплоотводная способность), измеряется в Дж/кг.

Внутренняя энергия и работа.

Внутренняя энергия тела может измениться не только за счёт теплопередачи, но и за счёт совершения работы:

Работа, совершаемая самой системой, положительна, внешними силами - отрицательна.

Основы молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа:

p - давление, n - концентрация молекул, m 0 - масса молекулы.

Температура.

Температурой называется скалярная физическая величина, характеризующая интенсивность теплового движения молекул изолированной системы при тепловом равновесии и пропорциональная средней кинетической энергии поступательного движения молекул.

Температурные шкалы.

ВНИМАНИЕ!!! В молекулярной физике температура берётся в градусах по Кельвину. При любой температуре t по Цельсию, значение температуры T по Кельвину выше на 273 градуса:

Связь температуры газа с кинетической энергией движения его молекул:

k - постоянная Больцмана; k = 1,38 · 10 -23 Дж/К.

Давление газа:

Уравнение состояния идеального газа:

N = n · V - общее число молекул.

Уравнение Менделеева-Клайперона:

m - масса газа, M - масса 1 моля газа, R - универсальная газовая постоянная:

Возьмем некоторое количество газа определенного химического состава, например азота, кислорода или воздуха, и заключим его в сосуд, объем которого можно изменять по своему усмотрению. Будем считать, что у нас имеется манометр, т. е. прибор для измерения давления газа, и термометр для измерения его температуры. Опыт показывает, что перечисленные макроскопические параметры полностью характеризуют газ как термодинамическую систему в том случае, когда этот газ состоит из нейтральных молекул, не обладающих собственным дипольным моментом.

В состоянии термодинамического равновесия не все эти параметры независимы, они связаны между собой уравнением состояния. Чтобы получить это уравнение, нужно воспользоваться

установленными на опыте закономерностями поведения газа при изменении каких-либо внешних параметров.

Газ в сосуде - простая термодинамическая система. Примем сначала, что ни количество газа, ни его химический состав во время опыта не меняются, так что речь пойдет только о трех макроскопических параметрах - давлении объеме V и температуре Для установления связывающих эти параметры закономерностей удобно зафиксировать значение одного из параметров и следить за изменениями двух других. Будем считать, что вызываемые нами изменения в газе происходят настолько медленно, что в любой момент времени макроскопические параметры характеризующие весь газ в состоянии термодинамического равновесия, имеют вполне определенные значения.

Изопроцессы. Как уже отмечалось, из любого неравновесного состояния термодинамическая система приходит в состояние равновесия за некоторое время - время релаксации. Чтобы при происходящих в системе изменениях макроскопические параметры имели вполне определенные значения, характерное время этих изменений должно быть много больше времени релаксации. Это условие накладывает ограничения на допустимую скорость процесса в газе, при котором сохраняют смысл его макроскопические параметры.

Процессы, протекающие при неизменном значении одного из параметров, принято называть изопроцессами. Так, процесс, происходящий при постоянной температуре, называется изотермическим, при постоянном объеме - изохорическим (изохорным), при постоянном давлении - изобарическим (изобарным).

Закон Бойля-Мариотта. Исторически первым в газе был экспериментально изучен изотермический процесс. Английский физик Р. Бойль и независимо от него французский физик Э. Мариотт установили закон изменения объема при изменении давления: для данного количества любого газа при неизменной температуре объем обратно пропорционален давлению. Обычно закон Бойля-Мариотта записывают в виде

Для поддержания постоянной температуры исследуемый газ должен находиться в хорошем тепловом контакте с окружающей средой, имеющей неизменную температуру. В этом случае говорят, что газ находится в контакте с термостатом - большим тепловым резервуаром, на состояние которого не влияют любые изменения, происходящие с исследуемым газом.

Закон Бойля-Мариотта хорошо выполняется для всех газов и их смесей в широком диапазоне температур и давлений. Отклонения от

этого закона становятся существенными лишь при давлениях, в несколько сотен раз превышающих атмосферное, и при достаточно низких температурах.

Проверить справедливость закона Бойля-Мариотта можно совсем простыми средствами. Для этого достаточно иметь запаянную с одного конца стеклянную трубку, в которой столбик ртути закрывает некоторое количество воздуха (трубка Мельде). Объем воздуха можно измерять линейкой по длине воздушного столба в трубке (рис. 45), а о давлении можно судить по высоте столбика ртути при разных ориентациях трубки в поле тяжести.

Для наглядного изображения изменений состояния газа и происходящих с ним процессов удобно использовать так называемые -диаграммы, где по оси абсцисс откладываются значения объема, а по оси ординат - давления. Кривая на -диаграмме, соответствующая изотермическому процессу, называется изотермой.

Рис. 45. Простейший прибор для проверки закона Бойля-Мариотта (трубка Мельде)

Рис. 46. Изотермы газа на -диаграмме

Как следует из закона Бойля-Мариотта, газовые изотермы представляют собой гиперболы (рис. 46). Чем выше температура, тем дальше от координатных осей расположена соответствующая изотерма.

Закон Шарля. Зависимость давления газа от температуры при неизменном объеме была экспериментально установлена французским физиком Ж. Шарлем. Согласно закону Шарля, давление газа при постоянном объеме линейно зависит от температуры:

где - давление газа при О °С. Оказывается, что температурный коэффициент давления а одинаков для всех газов и равен

Закон Гей-Люссака. Аналогичный вид имеет и зависимость объема газа от температуры при неизменном давлении. Это было установлено на опыте французским физиком Гей-Люссаком, который нашел, что температурный коэффициент расширения одинаков для всех газов. Значение этого коэффициента оказалось таким же, как и коэффициента а в законе Шарля. Таким образом, закон Гей-Люссака можно записать в виде

где - объем газа при О °С.

Совпадение температурных коэффициентов в законах Шарля и Гей-Люссака не случайно и свидетельствует о том, что эти устанавливаемые на опыте газовые законы не являются независимыми. Ниже мы подробнее остановимся на этом.

Газовый термометр. Тот факт, что выражаемая законами Шарля и Гей-Люссака зависимость давления или объема от температуры одинакова для всех газов, делает особенно удобным выбор газа в качестве термометрического тела. Хотя на практике использовать газовые термометры в силу их громоздкости и тепловой инерционности неудобно, именно по ним производится градуировка других термометров, более удобных для практических применений.

Шкала Кельвина. Зависимость давления или объема от температуры в законах Шарля и Гей-Люссака станет еще проще, если перейти к новой температурной шкале, потребовав, чтобы линейная зависимость превратилась в прямую пропорциональность.

Изобразив выражаемую формулой (3) зависимость объема газа от температуры (рис. 47) и продолжив график влево до пересечения с осью температуры, легко убедиться, что продолжение графика пересекает ось Гпри значении температуры, равном поскольку Именно в эту точку нужно поместить начало новой температурной шкалы, чтобы можно было записать уравнения (2) и (3) как прямую пропорциональность. Эту точку называют абсолютным нулем температуры. Масштаб новой шкалы, т. е. единица измерения температуры, выбирается так же, как и в шкале Цельсия. На новой температурной шкале нулю градусов Цельсия соответствует температура градуса (точнее 273,15), а любая другая температура Т связана с соответствующей температурой по шкале Цельсия соотношением

Введенная здесь температурная шкала называется шкалой Кельвина, а единица измерения, совпадающая с градусом шкалы Цельсия, называется кельвином и обозначается буквой К. Иногда эта шкала называется Международной практической шкалой температуры.

При использовании температурной шкалы Кельвина график закона Гей-Люссака принимает вид, показанный на рис. 48, а формулы (2) и (3) можно записать в виде

Рис. 47. Выражаемая законом Гей-Люссака зависимость объема газа от температуры при постоянном давлении

Рис. 48. График закона Гей-Люссака в температурной шкале Кельвина

Коэффициент пропорциональности в (6) характеризует наклон графика на рис. 48.

Уравнение состояния газа. Экспериментальные газовые законы дают возможность установить уравнение состояния газа. Для этого достаточно воспользоваться любыми двумя из приведенных законов. Пусть некоторое количество газа находится в состоянии с объемом давлением и температурой Переведем его в другое (промежуточное) состояние, характеризуемое тем же значением температуры и некоторыми новыми значениями объема V и давления При изотермическом процессе выполняется закон Бойля- Мариотта, поэтому

Теперь переведем газ из промежуточного состояния в конечное состояние с тем же значением объема , что и в промежуточном состоянии, и некоторыми значениями давления и температуры При изохорическом процессе выполняется закон Шарля, поэтому

поскольку Подставляя в из (7) и учитывая, что окончательно получаем

Мы изменили все три макроскопических параметра и Т, и тем не менее соотношение (9) показывает, что для данного количества газа (числа молей комбинация параметров имеет одно и то же значение, в каком бы состоянии этот газ не находился. Это означает, что уравнение (9) представляет собой уравнение состояния газа. Его называют уравнением Клапейрона.

В приведенном выводе уравнения (9) не использовался закон Гей-Люссака. Однако легко видеть, что в нем содержатся все три газовых закона. Действительно, полагая в получаем для изобарического процесса соотношение что соответствует закону Гей-Люссака.

Уравнение Менделеева-Клапейрона. Возьмем один моль газа при нормальных условиях, т. е. при и нормальном атмосферном давлении . В соответствии с установленным на опыте законом Авогадро один моль любого газа (гелия, азота, кислорода и т. д.) занимает при нормальных условиях одинаковый объем литра. Поэтому для одного моля любого газа комбинация обозначаемая через и называемая универсальной газовой постоянной (или молярной газовой постоянной), имеет одно и то же значение:

С учетом (10) уравнение состояния одного моля любого газа можно записать в виде

Уравнение (11) легко обобщить для произвольного количества газа. Так как при тех же значениях температуры и давления молей газа занимают в раз больший объем, чем 1 моль, то

В таком виде уравнение состояния газа впервые было получено русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева-Клапейрона.

Идеальный газ. Уравнение состояния газа (11) или (12) было получено на основе установленных на опыте газовых законов. Эти законы выполняются приближенно: условия их применимости

различны для разных газов. Например, для гелия они справедливы в более широком диапазоне температур и давлений, чем для углекислого газа. Приближенным является и уравнение состояния, полученное из приближенных газовых законов.

Введем в рассмотрение физическую модель - идеальный газ. Под этим будем понимать систему, для которой уравнение (11) или (12) является точным. Замечательной особенностью идеального газа является то, что его внутренняя энергия пропорциональна абсолютной температуре и не зависит от объема, занимаемого газом.

Как и во всех других случаях использования физических моделей, применимость модели идеального газа к тому или иному реальному газу зависит не только от свойств самого газа, но и от характера вопроса, на который требуется найти ответ. Такая модель не позволяет описать особенности поведения различных газов, но выявляет свойства, общие для всех газов.

С применением уравнения состояния идеального газа можно познакомиться на примере конкретных задач.

Задачи

1. В одном баллоне объемом находится азот при давлении . В другом баллоне объемом находится кислород при давлении Температура газов совпадает с температурой окружающей среды. Какое установится давление газов, если открыть кран трубки, соединяющей эти баллоны между собой?

Решение. После открывания крана газ из баллона с более высоким давлением будет поступать в другой баллон. В конце концов давление в баллонах выравняется, а газы перемешаются. Даже если в процессе перетекания газов температура изменилась, после установления теплового равновесия она снова сравняется с температурой окружающего воздуха.

Для решения задачи можно воспользоваться уравнением состояния идеального газа. Обозначив через количество газов в баллонах до открывания крана, имеем

В конечном состоянии смесь газов содержит молей, занимает объем и находится при давлении которое нужно определить. Применяя к смеси газов уравнение Менделеева-Клапейрона, имеем

Выражая из уравнений (13) и подставляя в (14), находим

В частном случае, когда исходные давления газов одинаковы, давление смеси после установления равновесия остается таким же. Интересен предельный случай соответствующий замене второго сосуда атмосферой. Из (15) при этом получаем где - давление атмосферы. Такой результат очевиден из общих соображений.

Обратим внимание на то, что выражаемый формулой (15) результат соответствует тому, что давление смеси газов равно сумме парциальных давлений каждого из газов, т. е. давлений, которые имел бы каждый из газов, занимая при той же температуре весь объем. Действительно, парциальные давления каждого газа можно найти с помощью закона Бойля-Мариотта:

Видно, что полное давление равное сумме парциальных давлений выражается формулой (15). Утверждение, что давление смеси химически невзаимодействующих газов равно сумме парциальных давлений, называется законом Дальтона.

2. Истопив печь, в дачном домике температуру воздуха повысили от 0 до Как при этом изменилась плотность воздуха?

Решение. Ясно, что объем помещения при протапливании печи не изменился, так как тепловым расширением стен можно пренебречь. Если бы мы нагревали воздух при неизменном объеме V в закрытом сосуде, его давление возросло бы, но плотность осталась бы неизменной. Но дачный домик не герметичен, поэтому неизменным остается давление воздуха, равное наружному атмосферному давлению. Ясно, что при повышении температуры Т должна измениться масса воздуха в помещении: какая-то его часть должна выйти через щели наружу.. Ясно, что столбик воды не будет вытолкнут из трубки только при очень малых изменениях температуры. Чтобы оценить изменение температуры, при котором столбик поднимается на заданное расстояние перепишем (19) следующим образом:

Полагая для оценки получаем Приведенная оценка показывает, что с помощью этого очень простого устройства можно обнаружить изменение температуры вплоть до 0,01 К, так как легко заменить изменение положения столбика на 1 мм.

Что такое время релаксации для термодинамической системы?

Какие ограничения должны быть наложены на скорость протекания процессов в газе, чтобы в любой момент времени имели смысл макроскопические параметры описывающие газ в состоянии равновесия?

Чем определяется числовое значение константы в правой части уравнения закона Бойля-Мариотта (1)?

Что имеют в виду, когда говорят, что изучаемая система находится в контакте с термостатом?

Предложите способ проверки закона Бойля-Мариотта с помощью описанного в тексте прибора (см. рис. 45).

Какие преимущества дает выбор газа в качестве термометрического тела?

Как связан выбор начала отсчета температур в шкале Кельвина со значением температурного коэффициента расширения газа?

Как устанавливается связь температур, измеренных по шкале Цельсия и шкале Кельвина?

Выведите уравнение состояния газа, используя законы Бойля-Мариотта и Гей-Люссака.

Уравнение Клапейрона было получено с использованием только двух газовых законов, однако содержит в себе все три закона. Как это связано с тем фактом, что у газов температурные коэффициенты давления и объема одинаковы?

Что такое универсальная газовая постоянная? Как она связана с законом Авогадро?

Какую физическую систему называют идеальным газом? Чем определяются условия применимости этой модели? От чего зависит внутренняя энергия идеального газа?

Можно ли объяснить установленный на опыте закон Дальтона для смеси газов, опираясь на уравнение Менделеева-Клапейрона?

Как изменится чувствительность к изменениям температур простого устройства, описанного в задаче 3, если верхнее отверстие трубки заткнуть?

Физическая химия: конспект лекций Березовчук А В

2. Уравнение состояния идеального газа

Изучение эмпирических газовых законов (Р. Бойль, Ж. Гей-Люссак) постепенно привело к представлению об идеальном газе, поскольку обнаружилось, что давление данной массы любого газа при постоянной температуре обратно пропорционально объему, занимаемому этим газом, и термические коэффициенты давления и объема с высокой точностью совпадают для различных газов, составляя, по современным данным, 1/273 град –1 . Придумав способ графического представления состояния газа в координатах «давление – объем», Б. Клапейрон получил объединенный газовый закон, связывающий все три параметра:

PV = BT ,

где коэффициент В зависит от вида газа и его массы.

Только через сорок лет Д. И. Менделеев придал этому уравнению более простой вид, записав его не для массы, а для единицы количества вещества, т. е. 1 кмоля.

PV = RT , (1)

где R – универсальная газовая постоянная.

Физический смысл универсальной газовой постоянной. R – работа расширения 1 кмоля идеального газа при нагревании на один градус, если давление не меняется. Для того, чтобы понять физический смысл R , представим себе, что газ находится в сосуде при постоянном давлении, и мы повысим его температуру на?T , тогда

PV 1 = RT 1 , (2)

PV 2 = RT 2 . (3)

Вычитая из (3) уравнение (2), получим

P (V 2 – V 1) = R (T 2 – T 1).

Если правая часть уравнения равна единице, т. е. мы нагрели газ на один градус, тогда

R = P ?V

Поскольку P = F /S , а?V равно площади сосуда S , умноженной на высоту подъема его поршня?h , имеем

Очевидно, что справа получим выражение для работы, и это подтверждает физический смысл газовой постоянной.

Из книги Физическая химия: конспект лекций автора Березовчук А В

ЛЕКЦИЯ № 1. Идеальный газ. Уравнение состояния реального газа 1. Элементы молекулярно-кинетической теории Науке известно четыре вида агрегатных состояний вещества: твердое тело, жидкость, газ, плазма. Переход вещества из одного состояния в другое называют фазовым

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

4. Уравнение состояния реального газа Исследования показали, что уравнение Менделеева – Клапейрона не очень точно выполняется при исследовании разных газов. Голландский физик Я. Д. Ван-дер-Ваальс первым понял причины этих отклонений: одна из них состоит в том, что

Из книги Живой кристалл автора Гегузин Яков Евсеевич

Получение атмосферного газа После того как заработала солнечная ядерная топка, солнечный ветер (разреженная плазма большей частью из протонов и электронов, движущаяся ныне со скоростью около 400 км/ч) выдул почти весь первичный водород с гелием, а внутренние планеты

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Получение или утрата атмосферного газа Теперь приложим данные закономерности к внутренним планетам и посмотрим, как их первичная атмосфера приобрела нынешние очертания.Начнем с Венеры и Марса, а Землю прибережем напоследок.Венера Основное различие между нашими

Из книги «Вы, конечно, шутите, мистер Фейнман!» автора Фейнман Ричард Филлипс

О ПУЗЫРЬКАХ ГАЗА В КРИСТАЛЛЕ Кристаллофизики часто мрачно шутят, что дефекты в кристаллах появляются всего лишь в двух случаях: когда экспериментатор, который выращивает кристаллы, хочет этого и когда он этого не хочет.Я расскажу о том, как появляются в кристаллах

Из книги Источники питания и зарядные устройства автора

Теория идеального газа Свойства идеального газа, давшего нам определение температуры, очень просты. При постоянной температуре действует закон Бойля – Мариотта: произведение pV при изменениях объема или давления остается неизменным. При неизменном давлении сохраняется

Из книги Вы, разумеется, шутите, мистер Фейнман! автора Фейнман Ричард Филлипс

XII. Состояния вещества Железный пар и твердый воздух Не правда ли – странное сочетание слов? Однако это вовсе не чепуха: и железный пар, и твердый воздух существуют в природе, но только не при обычных условиях.О каких же условиях идет речь? Состояние вещества определяется

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 14155

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.

Идеальный газ, уравнение состояния идеального газа, его температура и давление, объем… список параметров и определений, которыми оперируют в соответствующем разделе физики, можно продолжать достаточно долго. Сегодня мы поговорим как раз на эту тему.

Что рассматривается в молекулярной физике?

Основным объектом, который рассматривается в этом разделе, является идеальный газ. идеального газа было получено с учетом нормальных условий окружающей среды, и об этом мы поговорим немного позднее. Сейчас давайте подойдем к этой “проблеме” издалека.

Допустим, у нас есть некоторая масса газа. Ее состояние можно определить при помощи трех характера. Это, конечно же, давление, объем и температура. Уравнением состояния системы в этом случае будет формула связи между соответствующими параметрами. Она выглядит таким образом: F (p, V, T) = 0.

Вот здесь мы впервые потихоньку подбираемся к появлению такого понятия, как идеальный газ. Им называется газ, в котором взаимодействия между молекулами пренебрежимо малы. Вообще в природе такого не существует. Однако любой сильно близок к нему. От идеального мало чем отличаются азот, кислород и воздух, находящиеся в нормальных условиях. Чтобы записать уравнение состояния идеального газа, мы можем использовать объединенный Получим: pV/T = const.

Связанное понятие № 1: закон Авогадро

Он может рассказать нам о том, что если мы возьмем одинаковое количество молей абсолютно любого случайного газа и поставим их в одинаковые условия, среди которых температура и давление, то газы займут одинаковый объем. В частности, опыт проводился при нормальных условиях. Это означает, что температура была равна 273,15 Кельвинам, давление - одной атмосфере (760 миллиметров ртутного столба или же 101325 Паскалей). При таких параметрах газ занял объем равный 22,4 литра. Следовательно, мы можем говорить о том, что для одного моля любого газа соотношение числовых параметров будет величиной постоянной. Именно поэтому было принято решение этой цифре дать обозначение буквой R и назвать ее универсальной газовой постоянной. Таким образом, она равняется 8,31. Размерность Дж/моль*К.

Идеальный газ. Уравнение состояния идеального газа и манипуляции с ним

Давайте попробуем переписать формулу. Для этого запишем его в таком виде: pV = RT. Далее совершим нехитрое действие, умножим обе части уравнения на произвольное количество молей. Получим pVu = uRT. Примем во внимание тот факт, что произведение молярного объема на количество вещества есть просто объем. Но ведь количество молей одновременно будет равняться частному массы и молярной массы. Именно так выглядит Оно дает четкое понятие о том, какую систему образует идеальный газ. Уравнение состояния идеального газа примет вид: pV = mRT/M.

Выведем формулу для давления

Давайте проведем еще некоторые манипуляции с полученными выражениями. Для этого правую часть уравнения Менделеева-Клапейрона умножим и разделим на число Авогадро. Теперь внимательно смотрим на произведение количества вещества на Это есть не что иное, как общее число молекул в газе. Но в то же время отношение универсальной газовой постоянной к числу Авогадро будет равно постоянной Больцмана. Следовательно, формулы для давления можно записать таким образом: p = NkT/V или p = nkT. Здесь обозначение n это концентрация частиц.

Процессы идеального газа

В молекулярной физике существует такое понятие, как изопроцессы. Это которые имеют место в системе при одном из постоянных параметров. При этом масса вещества также должна оставаться постоянной. Давайте рассмотрим их более конкретно. Итак, законы идеального газа.

Постоянным остается давление

Это закон Гей-Люссака. Выглядит он так: V/T = const. Его можно переписать и по-другому: V = Vo (1+at). Здесь a равняется 1/273,15 К^-1 и носит название "коэффициент объемного расширения". Мы можем подставить температуру как по шкале Цельсия, так и по шкале Кельвина. В последнем случае получим формулу V = Voat.

Постоянным остается объем

Это второй закон Гей-Люссака, более часто называемый законом Шарля. Выглядит он так: p/T = const. Есть и другая формулировка: p = po (1 + at). Преобразования могут быть проведены в соответствии с предыдущим примером. Как можно видеть, законы идеального газа иногда бывают достаточно похожими друг на друга.

Постоянным остается температура

Если температура идеального газа остается величиной постоянной, то мы можем получить закон Бойля-Мариотта. Он может быть записан таким образом: pV = const.

Связанное понятие № 2: парциальное давление

Допустим, у нас имеется сосуд с газами. Это будет смесь. Система находится в состоянии теплового равновесия, а сами газы между собой не реагируют. Здесь N будет обозначать общее количество молекул. N1, N2 и так далее, соответственно, количество молекул в каждом из компонентов имеющейся смеси. Возьмем формулу давления p = nkT = NkT/V. Ее можно раскрыть для конкретного случая. Для двухкомпонентной смеси формула примет вид: p = (N1 + N2) kT/V. Но тогда получится, что общее давление будет суммироваться из частных давлений каждой смеси. А значит, оно будет иметь вид p1 + p2 и так далее. Это и будут парциальные давления.

Для чего это нужно?

Полученная нами формула указывает на то, что давление в системе оказывается со стороны каждой группы молекул. Оно, кстати, не зависит от других. Этим воспользовался Дальтон при формулировании закона, названного впоследствии в его честь: в смеси, где газы не реагируют между собой химически, общее давление будет равно сумме парциальных давлений.