Глюконеогенез - это процесс синтеза глюкозы из веществ неуглеводной природы. У млекопитающих эту функцию выполняет в основном печень , в меньшей мере - почки и клетки слизистой кишечника . Главными суб­стратами глюконеогенеза являютсяпируват, лактат, глицерин, аминокислоты (рис.10).

Рисунок 10

Глюконеогенез обеспечивает потребности орга­низма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов (физическая нагрузка, голодание). Постоянное поступление глюкозы особенно необходимо для нервной системы и эри­троцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга; при тяжелой гипогликемии возникает коматозное состояние и мо­жет наступить летальный исход.

Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза. На рисунке показаны пункты включения первичных субстратов в глюконеогенез:

Глюкоза необходи­ма для жировой ткани как источник глицерола, входящего в состав глицеридов; она играет существенную роль в поддержании эффек­тивных концентраций метаболитов цикла лимон­ной кислоты во многих тканях. Даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глю­козе. Кроме того, глюкоза служит единственным ви­дом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшествен­ником молочного сахара (лактозы) в молочных же­лезах и активно потребляется плодом в период раз­вития. Механизм глю­конеогенеза используется для удаления из крови продуктов тканевого метаболизма, например лактата, образующегося в мышцах и эритроцитах, глицерола, непрерывно образующегося в жировой ткани

Включение различных субстратов в глюконео­генез зависит от физиологического состояния орга­низма. Лактат является продуктом анаэробного гликоли­за в эритроцитах и работающих мышцах. Глицерин высвобождается при гидролизе жиров в жировой ткани в постабсорбтивный период или при физической нагрузке. Аминокислоты образуются в результате распада мышечных белков.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться (рис. 12). Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным:

Рисунок 12

Таких циклов существует три - соответственно трем необратимым реакциям. Эти циклы служат точками приложения регуляторных механизмов , в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза.

Направление реакцийпервого субстратного цик­ла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюко­зы в крови повышается. Актив­ность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реак­цияглюкоза ® глюкозо-6-фосфат. Кроме того, инсу­лин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликолитическому пути.

Превращение глюкозо-6-фосфата в глюкозу катализируется другой специфической фосфатазой-глюкозо-6-фосфатазой. Она присутствует в пе­чени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани по­ставлять глюкозу в кровь.

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализи­руетсягликогенсинтазой .

Второй субстратный цик­л: превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат, катализи­руется специфическим ферментомфруктозо-1,6-бисфосфатазой. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах.

Направление реакцийвторого субстратного цик­ла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата.

Фруктозо-2,6-бисфосфат образуется путем фосфорилирования фруктозо-6-фосфата при участии би­функционального фермента (БИФ), который ка­тализирует также и обратную реакцию.

Киназная активность проявляется, когда бифунк­циональный фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин-глюкагоновый индекс высокий.

При низком инсулин-глюкагоновом индексе, ха­рактерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего яв­ляются снижение количества фруктозо-2,6-бисфосфата, замедление гликолиза и переключение на глюконеогенез.

Киназная и фосфатазная реакции катализируют­ся разными активными центрами БИФ, но в каждом из двух состояний фермента - фосфорилиро-ванном и дефосфорилированном - один из актив­ных центров ингибирован.

Запасы гликогена в печени ограничены и после 12-18 часового голодания они исчезают полностью. Многие клетки нуждаются в постоянном обеспечении глюкозой (эритроциты, нейроны, мышечные клетки в анаэробных условиях). Глюконеогенез является тем метаболическим путем, который решает данную проблему. Глюконеогенез – это метаболический путь превращения неуглеводных соединений в глюкозу. Многие соединения могут участвовать в этом процессе. Это и молочная кислота, и ПВК, и аминокислоты, распадающихся до пирувата (аланин, цистеин, глицин, серин, треонин и др.), и глицерин, и пропиононил-КоА, и субстраты цикла Кребса (оксалацетат и др., рис. 5.8).

Глюконеогенез представляет собой модификацию таких процессов, как гликолиз и цикл Кребса. Большая часть реакций гликолиза обратима. Исключение составляют три реакции, которые катализируют гексокиназа, фосфофруктокиназа-1 и пируваткиназа и для преодоления этих реакций используются специальные ферменты, которые назвали ключевыми реакциями глюконеогенеза. Данные ферменты сосредоточены в печени и корковом веществе почек. В таблице 5.2. приводятся названия ферментов, катализирующих необратимые реакции гликолиза и соответствующих им ключевых ферментов глюконеоегенеза.

Таблица 5.2. Ключевые ферменты гликолиза и гликонеогенеза

При совместной работе таких ферментов существует проблема т.н. “пустых” субстратных циклов. При условии катализа прямой и обратной реакции разными ферментами, продукт, получаемый в прямой реакции, становится субстратом другого фермента, который катализирует обратную реакцию, превращая продукт вновь в субстрат первого фермента. Возникает опасность “холостого” прокручивания субстратов реакции. Проблема решается организацией многоуровневой регуляции, включающей реципрокную аллостерическую регуляцию и ковалентную модификацию структуры ферментов.

Принято считать начальным этапом глюконеогенеза реакции, идущие в обход пируваткиназной реакции гликолиза. Пируваткиназа – объект влияния регуляторных систем(рис.5.9), управляющих скоростью гликолиза, поэтому в условиях благоприятствующих глюконеогенезу (голодание и др.) активность этого фермента следует затормозить. Этому способствует повышение количества аланина, который является аллостерическим ингибитором пируваткиназы и усиление секреции глюкагона. Последний стимулирует образование цАМФ в гепатоцитах, активирующей протеинкиназу А. Фосфорилирование пируваткиназы под влиянием протеинкиназы А вызывает переход ее в неактивное состояние. Торможение пируваткиназы благоприятствует включению глюконеогенеза.



.

Рис.5.9. Регуляция активности пируваткиназы

Рис.5.10. Основные субстраты и ферменты глюконеогенеза:

1–лактатдегидрогеназа; 2– пируваткарбоксилаза; 3–малатдегидрогеназа; 4–фосфоенолпируват карбоксикиназа; 5–фруктозо-1,6-дифосфатаза; 6– глюкозо-6-фосфатаза; 7–глицеролкиназа; 8–a-глицеролфосфатде гидрогеназа

Если превращение фосфоенолпирувата в ПВК, которое катализирует пируваткиназа, представляет одну химическую реакцию, то обратное превращение ПВК в фосфоенолпируват требует нескольких реакций. Первая реакция – это карбоксилирование пирувата. Реакция катализируется пируваткарбоксилазой и протекает с участием карбоксибиотина – активной форы СО 2 в клетке. Продукт карбоксилирования – оксалоацетат занимает особое место в метаболизме митохондрий, где протекает данная реакция. Это важнейший субстрат цикла Кребса (см. ниже) и его выход из митохондрий затруднен. Для преодоления мембраны митохондрий оксалоацетат восстанавливается при помощи митохондриальной малатдегидрогеназы в легко приникающую через мебрану яблочную кислоту. Последняя, покинув митохондрии, в цитозоле окисляется вновь в оксалоацетат уже под влиянием цитозольной малатдегидрогеназы. Дальнейшее превращение оксалоацетата в ФЕПВК происходит в цитозоле клетки. Здесь при помощи фосфоенолпируваткарбоксикиназы окалоацетат декарбоксилируется с затратой энергии, высвобождаемой при гидролизе ГТФ и образуется ФЕПВК.

После образования ФЕПВК последующие реакции представляют обратимые реакции гликолиза. Из каждых двух образующихся 3-ФГА одна молекула при участии фосфотриозоизомеразы превращается в ФДА и обе триозы под влиянием альдолазы конденсируются в фруктозо-1,6-дифосфат. Некоторое количество ФДА образуется путем окисления глицеролфосфата, возникающего под влиянием глицеролкиназы из глицерола, поступающего в печень из жировой ткани. Это единственный субстрат из липидов, который участвует в глюконеогенезе. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируется фруктозо-1,6-дифосфатазой-1. Затем вновь следует реакция, обратная гликолизу. Заключительная реакция глюконеогенеза катализируется ферментом глюкозо-6-фосфатазой, который катализирует гидролиз глюкозо-6-фосфатаи образующаяся свободная глюкоза может выходить из клетки.

Суммарная реакция синтеза молекулы глюкозы:

2 ПВК + 4 АТФ + 2 ГТФ + 2НАДН + 2H + + 6H2O Глюкоза + 2НАД + + 4АДФ+ 2 ГДФ + 6 Фн +6H +

Таким образом, синтез одной молекулы глюкозы “обходится” клетке затратой шести макроэргов. 2 молекулы АТФ расходуются для активирования СО 2 , 2 молекулы ГТФ используются в фосфоенолпируваткарбоксикиназной реакции и 2 молекулы АТФ – для образования 1,3-дифосфоглицериновой кислоты.

Глюконеогенез активируется в клетках печени во время голодания, после продолжительных физических упражнений, при употреблении пищи, богатой белками при низком содержании в ней углеводов и т.д.

Интенсивность процесса зависит от количества субстратов, и активности, и количества ключевых ферментов гликолиза и глюконеогенеза.

Основными поставщиками субстратов для печени являются мышцы, эритроциты, жировая ткань. У последней довольно ограниченные возможности, поскольку только глицерол может использоваться для синтеза глюкозы, а это только около 6% от веса капельки жира.

Лактат, образующийся в результате работы мышц в анаэробных условиях или поступающий из эритроцитов, более значимый источник глюкозы. Наиболее важными источниками являются гликогенные аминокислоты, которые могут поступать с пищей, богатой белками или из мышц в условиях голодания.

Рис. 5.11. Цикл Кори

Чтобы непрерывно снабжать глюкозой клетки, для которых она является основным источником энергии, но они не могут окислить ее полностью в силу отсутствия митохондрий (эритроциты) или из-за работы в анаэробных условиях, между печенью и этими клетками устанавливаются циклические процессы по обмену субстратами. Один из таких – цикл Кори: образующаяся в мышцах (эритроцитах) молочная кислота поступает в общий кровоток, захватывается печенью и используется ею в качестве субстрата глюконеогенеза; синтезируемая при этом глюкоза отдается в кровототок и метаболизируется мышцами или эритроцитами для получения энергии (рис. 5.11).

Рис.5.12.Аланиновый цикл

В отличие от цикла Кори, аланиновый цикл(рис.5.12) протекает при условии потребления периферическими тканями кислорода и требует митохондрий. При употреблении пищи богатой белами или при голодании происходит довольно активный обмен между печенью и мышцами аланином и глюкозой. Аланин из мышц передается клеткам печени, где он переаминируется и ПВК используется для синтеза глюкозы. По мере необходимости глюкоза поступает в мышцы и окисляется до ПВК, а затем, путем переаминирования, превращается в аланин который может вновь повторить этот цикл. Энергетически это более выгодный путь, чем цикл Кори.


Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, гликогенные аминокислоты, глицерол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот.



У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (в корковом веществе). Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процесс глюконеогенеза на 3 этапах используются другие ферменты.


Синтез фосфоенолпирувата осуществляется в несколько этапов: 1) Превращение пирувата в оксалоацетат. Пируват карбоксилируется пируваткарбоксилазой при участии АТФ: Пируваткарбоксилаза, которая катализирует эту реакцию, является аллостерическим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА.








Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо- 1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:





Регуляция глюконеогенеза. Роль аллостерического активатора пируваткарбоксилазы выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил- КоА одновременно является отрицательным модулятором пируватдегидрогеназного комплекса. Накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует активации глюконеогенеза.


Другой важный момент в регуляции глюконеогенеза – реакция, катализируемая фруктозо-1,6-бисфосфатазой – ферментом, который ингибируется АМФ. Противоположное действие АМФ оказывает на фосфофрукто киназу, т. е. для этого фермента он является аллостерическим активатором. При низкой концентрации АМФ и высоком уровне АТФ происходит стимуляция глюконеогенеза. Напротив, когда величина отношения АТФ/АМФ мала, в клетке наблюдается расщепление глюкозы. Глюконеогенез и гликолиз регулируются реципрокно, так что, если активность одного из путей относительно понижается, то активность другого пути повышается.




Фруктозо-2,6-бисфосфат это метаболит, образующийся из фруктозо-6-фосфата и выполняющий только регуляторные функции. Образование фруктозо-2,6-бисфосфата путем фосфорилирования фруктозо-6-фосфата катализирует бифункциональный фермент (БИФ), который катализирует также и обратную реакцию. В реакции фосфорилирования фруктозо-6-фосфата с использованием АТФ БИФ проявляет киназную активность, а при дефосфорилировании образованного фруктозо-2,6-бисфосфата фосфатазную. Это обстоятельство и определило название фермента бифункциональный.


Киназная активность БИФ проявляется, когда фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для периода, когда инсулин/глюкагоновый индекс высокий. В этот период количество фруктозо-2,6-бисфосфата увеличивается. При низком инсулин/глюкагоновом индексе, характерном для периода длительного голодания, происходит фосфорилирование БИФ, и он функционирует как фосфатаза. Результатом является снижение количества фруктозо-2,6- бисфосфата



Глюконеогенез может регулироваться и непрямым путем. Фермент гликолиза пируваткиназа существует в 2 формах – L и М. Форма L (от англ. liver – печень) преобладает в тканях, способных к глюконеогенезу. Эта форма ингибируется избытком АТФ и некоторыми аминокислотами, в частности аланином. М-форма (от англ. muscle – мышцы) такой регуляции не подвержена. В условиях достаточного обеспечения клетки энергией происходит ингибирование L-формы пируваткиназы. Как следствие ингибирования замедляется гликолиз и создаются условия, благоприятствующие глюконеогенезу.



Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение NАDН/NАD+ ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эта последовательность событий называется глюкозо-лактатным циклом, или циклом Кори




Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования" title="Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования" class="link_thumb"> 22 Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования"> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток"> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования" title="Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования"> title="Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования">


Е1 - пируватдегидрогеназа; Е2 - дигидролипоилацетилтрансфсраза; Е3 - дигидролипоилдегидрогеназа Коферменты: ТПФ, амид липоевой кислоты, коэнзим А, ФАД, НАД стадии процесса




Цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль клеточного топлива: углеводов, жирных кислот и аминокислот. Цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций




В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис- аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза).


Третья реакция лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД- зависимой изоцитратдегидрогеназы: НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg2+ или Мn2+


Во время четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, HS-KoA, ФАД и НАД+:


Пятая реакция катализируется ферментом сукцинил-КоА- синтетазой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА: АТФ Субстратное фофорилирование


В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней митохондриальной мембраной:


Седьмая реакция осуществляется под влиянием фермента фумаратгидратазы (фумаразы). Фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью: в ходе реакции образуется L-яблочная кислота:




Одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО2 и Н2О дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.


Молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма При этом в результате полного окисления одной молекулы глюкозы может образоваться 36 молекул АТФ С помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н+ в митохондрии.




В клетках печени, почек и сердца действует более сложная малат-аспартатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и аспартатаминотрансферазы как в цитозоле, так и в митохондриях. Если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ






Открытие пути прямого окисления углеводов, или, как его называют, пентозофосфатного цикла, принадлежит О. Варбургу, Ф. Липману, Ф. Дикенсу и В.А. Энгельгарду У млекопитающих активность пентозофосфатного цикла относительно высока в печени, надпочечниках, эмбриональной ткани и молочной железе в период лактации. Значение этого пути в обмене веществ велико. Он поставляет восстановленный НАДФН, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозофосфатного цикла примерно на 50% покрывается потребность организма в НАДФН Образовавшийся НАДФН используется в цитозоле на восстановительные синтезы и не участвует в окислительном фосфорилировании, протекающем в митохондриях. Пентозофосфатный цикл поставляет пентозофосфаты для синтеза нуклеиновых кислот и многих коферментов.


Пентозофосфатный цикл начинается с окисления глюкозо-6- фосфата и последующего окислительного декарбоксилирования продукта (в результате от гексозофосфата отщепляется первый атом углерода). Это первая, так называемая окислительная, стадия пентозофосфатного цикла.



Первая реакция – дегидрирование глюкозо-6-фосфата при участии фермента глюкозо-6-фосфатдегидрогеназы и кофермента НАДФ+. Образовавшийся в ходе реакции 6-фосфоглюконо-δ-лактон – соединение нестабильное и с большой скоростью гидролизуется либо спонтанно, либо с помощью фермента 6-фосфоглюконолактоназы с образованием 6-фосфоглюконовой кислоты (6-фосфоглюконат) и НАДФН:


Во второй – окислительной – реакции, катализируемой 6-фосфоглюконатдегидрогеназой (декарбоксилирующей), 6- фосфоглюконат дегидрируется и декарбоксилируется. В результате образуется фосфорилированная кетопентоза – D-рибулозо-5-фосфат и еще 1 молекула НАДФН:


Под действием соответствующей эпимеразы из рибулозо-5- фосфата может образоваться другая фосфопентоза – ксилулозо-5- фосфат. Кроме того, рибулозо-5-фосфат под влиянием особой изомеразы легко превращается в рибозо-5-фосфат. Между этими формами пентозофосфатов устанавливается состояние подвижного равновесия:


Неокислительный этап (стадия) пентозофосфатного цикла. Реакции этого этапа не связаны с использованием кислорода и протекают в анаэробных условиях. При этом образуются вещества, характерные для первой стадии гликолиза (фруктозо- 6-фосфат, фруктозо-1,6-бисфосфат, фосфотриозы), а другие – специфические для пентозофосфатного пути (седогептулозо-7- фосфат, пентозо-5-фосфаты, эритрозо-4-фосфат).


Основными реакциями неокислительной стадии пентозофосфатного цикла являются транскетолазная и трансальдолазная. Эти реакции катализируют превращение изомерных пентозо-5-фосфатов. Коферментом в транскетолазной реакции служит ТПФ, играющий роль промежуточного переносчика гликольальдегидной группы от ксилулозо-5-фосфата к рибозо-5-фосфату. В результате образуется семиуглеродный моносахарид седогептулозо-7-фосфат и глицеральдегид-3-фосфат:








Синдром Вернике-Косакова (нервно-псих. заболевание) связан со значительным снижением (в 10 раз) способности транскетолазы связывать кофермент ТПФ. Дефект гена глюкозо-6- фосфатдегидрогеназы в эритроцитах сопровождается гемолитической анемией. Причина – недостаток НАДФН и, как следствие, недостаток восстановленного глутатиона (GSH), что приводит к росту образования активных форм кислорода и гемолизу эритроцитов

Глюконеогенез – синтез глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Основными субстратами глюконеогенеза являются лактат, глицерол, аминокислоты. Глюконеогенез является обратным процессом гликолиза, который протекает в цитоплазме и матриксе митохондрий. Необратимые реакции гликолиза (1, 3 и 10), катализируемые гексокиназами, фруктокиназами и пируваткиназами обходятся с участием 4 специфических ферментов глюконеогенеза: пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-фосфотазы и глюкозо-6-фосфотазы. Кроме того, в глюконеогенезе участвуют ферменты ЦТК, например, малат ДГ.

Реакции глюконеогенеза представлены на схеме. Ключевые (необратимые) реакции глюконеогенеза:

    Пируваткарбоксилаза (ПВК: СО 2 -синтетаза (АТФ→АДФ+Фн)) содержит биотин, находиться в митохондриях, превращает ПВК в ЩУК. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибитор: АМФ, активатор АцетилКоА. Образующийся ЩУК проходит внутреннюю мембрану митохондрий в своей восстановленной (в виде малата) или аминоформе (в виде аспартата).

    Фосфоенолпируваткарбоксикиназа (ГТФ: ЩУК-2-фосфотрансфераза (декарбоксили-рующая)) находиться в цитоплазме, превращает ЩУК в ФЕП. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

    Фруктозо-1,6-фосфотаза (Фруктозо-1,6дф: фосфо-гидролаза) дефосфорилирует фруктозо-1,6дф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибирует АМФ, фруктозо-2,6дф. Активатор: цитрат, жирные кислоты.

    Глюкозо-6-фосфотаза (Глюкозо-6ф: фосфо-гидролаза) дефосфорилирует глюкозо-6ф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

Энергетический баланс глюконеогенеза . На образование 1 глюкозы из 2 лактатов требуется 6 АТФ: 2 АТФ для пируваткарбоксилазы, 2 ГТФ для ФЕПкарбоксикиназы, 2 АТФ для фосфоглицераткиназы. Обще уравнение глюконеогенеза:

2 лактат + 4 АТФ + 2 ГТФ + 4 Н 2 О → 1 глюкоза + 4 АДФ + 2 ГДФ + 6 Фн

Регуляция глюконеогенеза . Регуляция глюконеогенеза осуществляется реципрокно с реакциями гликолиза: активация глюконеогенеза, сопровождается ингибированием гликолиза и наоборот. Регуляция обмена глюкозы происходит с участием гормонов и метаболитов, которые изменяют активность и количество регуляторных ферментов гликолиза и глюконеогенеза. Инсулин индуцирует синтез ключевых ферментов гликолиза и репрессирует синтез ключевых ферментов глюконеогенеза. Глюкагон, кортизол и адреналин индуцирует синтез ключевых ферментов глюконеогенеза. Ключевые ферменты гликолиза активируют – АМФ, фруктозо-2,6дф, фруктозо-1,6дф, ингибируют – АТФ, НАДН 2 , цитрат, жирные кислоты, аланин, АцетилКоА, глюкагон, адреналин. Ключевые ферменты глюконеогенеза активируют – АцетилКоА, глюкагон, ингибируют – АМФ, фруктозо-2,6дф.

Тканевые особенности глюконеогенеза. В большинстве тканей глюконеогенеза нет.

Наибольшая активность глюконеогенеза отмечается в печени, меньше в почках и слизистой оболочке кишечника, в них может синтезироваться до 80-100г глюкозы в сутки. В этих органах глюконеогенез идет до конца с образованием свободной глюкозы, которая может выходить из клеток, поддерживая гомеостаз глюкозы в крови. В норме гомеостаз глюкозы в крови обеспечивается глюконеогенезом печени до 80%, почек до 20%.

Небольшая активность глюконеогенеза наблюдается в мышечных тканях, однако из-за отсутствия у них последних ферментов глюконеогенеза, вместо свободной глюкозы образуются только ее производные, которые не способны покинуть клетку. Таким образом, углеводы синтезируются в мышечных тканях только для собственных нужд. Например, в скелетных мышцах и жировой ткани нет глюкозо-6-фосфотазы, продукт глюконеогенеза – глюкозо-6ф. В миокарде и гладких мышцах нет фруктозо-1,6-дифосфотазы, продукт глюконеогенеза – фруктозо-1,6-дф.

Биологическое значение глюконеогенеза . Необходимость поддержание постоянного уровня глюкозы в крови связана с тем что, для многих тканей глюкоза является основным (нервная ткань), а для некоторых единственным (эритроциты) источником энергии. Потребность в синтезе глюкозы объясняется тем что, гликогенолиз печени может самостоятельно обеспечивать гомеостаз глюкозы в крови только в течение 8-12 часов, далее запас гликогена в течение суток почти полностью истощается. В условиях длительного голодания (больше суток) глюконеогенез является единственным источником глюкозы в организме.

А Пируват и лактат

Пируват образуется в печени из лактата и аланина. Лактатдегидрогеназа окисляет лактат в пируват с образованием NADH. Аланинаминотрансфераза переносит аминогруппу с аланина на α -кетоглутарат с образованием глутамата и пирувата.

Б Глюкогенные аминокислоты

Аминокислоты, которые катаболизируются до пирувата или метаболитов ЦТК, являются потенциальными субстратами глюконеогенеза (пируват и метаболиты ЦТК способны образовывать оксалоацетат и включаться в глюконеогенез). Такие аминокислоты называют глюкогенными . Аминокислоты аланин и глутамин, переносящие аминогруппы из мышц в печень, являются особенно важными глюкогенными аминокислотами в нашем организме.

В Глицерол

Глицерол поступает в наш организм с пищей и синтезируется в печени и жировой ткани. Во время голодания триацилглицеролы (ТАГ) в адипоцитах расщепляются до глицерола и жирных кислот. Глицерол поступает в кровь и переносится в печень. Далее в ходе двух ферментативных реакций он преобразуется в дигидроксиацетонфосфат , который является метаболитом гликолиза и глюконеогенеза.

Г Жирные кислоты

Жирные кислоты с нечетным числом атомов окисляются с образованием про- пионил-КоА . Он преобразуется в метилмалонил-КоА, который образует сукцинилКоА в ходе ещё одной ферментативной реакции. Сукцинил-КоА является метаболитом ЦТК, поэтому потенциально способен включаться в глюконеогенез. Это подтверждается исследованиями с изотопами углерода C-14.

2.3 Реакции глюконеогенеза

А Уравнения реакций

Пируват + АТФ + HCO3 - + H2 O Оксалоацетат + АДФ + Фн + 2H+

Оксалоацетат + ГТФ Фосфоенолпируват + ГДФ + CO2

Фосфоенолпируват + H2 O 2-Фосфоглицерат

2-Фосфоглицерат 3-Фосфоглицерат

3-Фосфоглицерат + АТФ 1,3-Бисфосфоглицерат + АДФ

1,3-Бисфосфоглицерат + NADH + H+ Глицеральдегид-3-фосфат + NAD+ + Фн (× 2)

Глицеральдегид-3-фосфат Дигидроксиацетонфосфат

8. Дигидроксиацетонфосфат + Глицеральдегид-3-фосфат Фруктозо-1,6-бисфосфат

9. Фруктозо-1,6-бисфосфат + H2 O Фруктозо-6-фосфат + Фн

10. Фруктозо-6-фосфат Глюкозо-6-фосфат

11. Глюкозо-6-фосфат + H2 O Глюкоза + Фн

32 Глава 2 Глюконеогенез

Б Энергетические барьеры и уникальные реакции глюконеогенеза

В гликолизе необратимыми являются 1-я, 3-я и 10-я реакции. Эти реакции идут лишь в одном направлении и называютсяэнергетическими барьерами . В глюконеогенезе они обходятся с помощью 4 реакций. Остальные реакции являются общими для гликолиза и глюконеогенеза, поскольку способны идти как в прямом, так и в обратном направлении в зависимости от избытка продукта или субстрата.

Реакция 1

В первой реакции глюконеогенеза пируваткарбоксилаза катализирует карбоксилирование пирувата с образованиемоксалоацетата с затратой 1 молекулы АТФ. Реакция протекает в митохондриях в две фазы:

1. Разрыв макроэргической связи в молекуле АТФ с образованием АДФ. Образуется высокоэнергетическая молекула карбоксифосфата, которая затем связывается с биотином и «активируется».

2. Активная карбоксильная группа переносится с карбоксибиотина на молекулу пирувата с образованием оксалоацетата.

Реакция 2

Реакции глюконеогенеза 33

Гормональная регуляция:

Некоторые гормоны оказывают стимулирующее влияние на экспрессию гена ФЕПкарбоксикиназы.

Вторая реакция глюконеогенеза приводит к образованию высокоэнергетической молекулы - фосфоенолпирувата . В ходе этой реакции оксалоацетат декарбоксилируется с затратой 1 молекулы ГТФ.

Рис. 7. Транспорт оксалоацетата и фосфоенолпирувата из митохондрий в цитозоль.

Эту реакцию катализирует фермент ФЕП-карбоксикиназа . У человека он обнаруживается как в митохондриях, так и в цитозоле. Однако в некоторых тканях он присутствует только в цитозоле, поэтому оксалоацетат должен быть перенесен туда из митохондрий. Во внутренней мембране митохондрий есть белковые переносчики для малата и аспартата, но не для оксалоацетата, поэтому он должен быть преобразован в одно из этих соединений, для которых в мембране есть транспортные белки.

Для этого существует два пути (см. Рис. 7 ): 1) оксалоацетат восстанавливается до малата; 2) оксалоацетат принимает аминогруппу в реакции трансаминирования и образует аспартат. Первый путь требует участия NADH. Второй имеет небольшое в печени: аспартат, который переносится в цитозоль из митохондрий, дезаминируется в цикле мочевины до оксалоацетата.

Реакции 3-8

Эти реакции катализируются ферментами гликолиза, однако протекают не в прямом (для гликолиза), а в обратном направлении.

Реакция 9

В 9-й реакции глюконеогенеза фруктозо-1,6-бисфосфат гидролизуется до фруктозо-6-фосфата при участии фермента фруктозо-1,6-бисфосфатазы . Известно несколько аллостерических регуляторов этого фермента (указаны выше).

Реакция 10

Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат. Эту реакцию катализирует фермент гликолиза фосфоглюкоизомераза.

Реакция 11

Заключительной реакцией глюконеогенеза является дефосфорилирование глюкозы в эндоплазматическом ретикулуме, катализируемое глюкозо-6-фосфата- зой . В результате этой реакции образуетсяглюкоза . Остаток фосфорной кислоты и глюкоза переносятся обратно в цитозоль с помощью белков T3 и T2, соответственно. Далее свободная глюкоза выносится наружу из клетки белками ГЛЮТ2.

Фермент этой реакции обнаружен лишь в печени, почках и тонком кишечнике, поэтому эти органы способны экспортировать глюкозу в кровь. Остальные клетки (не все) синтезируют глюкозу лишь для собственных нужд.